Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38045277

RESUMO

Cells are a fundamental unit of biological organization, and identifying them in imaging data - cell segmentation - is a critical task for various cellular imaging experiments. While deep learning methods have led to substantial progress on this problem, most models in use are specialist models that work well for specific domains. Methods that have learned the general notion of "what is a cell" and can identify them across different domains of cellular imaging data have proven elusive. In this work, we present CellSAM, a foundation model for cell segmentation that generalizes across diverse cellular imaging data. CellSAM builds on top of the Segment Anything Model (SAM) by developing a prompt engineering approach for mask generation. We train an object detector, CellFinder, to automatically detect cells and prompt SAM to generate segmentations. We show that this approach allows a single model to achieve human-level performance for segmenting images of mammalian cells (in tissues and cell culture), yeast, and bacteria collected across various imaging modalities. We show that CellSAM has strong zero-shot performance and can be improved with a few examples via few-shot learning. We also show that CellSAM can unify bioimaging analysis workflows such as spatial transcriptomics and cell tracking. A deployed version of CellSAM is available at https://cellsam.deepcell.org/.

2.
Mol Microbiol ; 119(6): 659-676, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066636

RESUMO

Bacteria often grow into matrix-encased three-dimensional (3D) biofilm communities, which can be imaged at cellular resolution using confocal microscopy. From these 3D images, measurements of single-cell properties with high spatiotemporal resolution are required to investigate cellular heterogeneity and dynamical processes inside biofilms. However, the required measurements rely on the automated segmentation of bacterial cells in 3D images, which is a technical challenge. To improve the accuracy of single-cell segmentation in 3D biofilms, we first evaluated recent classical and deep learning segmentation algorithms. We then extended StarDist, a state-of-the-art deep learning algorithm, by optimizing the post-processing for bacteria, which resulted in the most accurate segmentation results for biofilms among all investigated algorithms. To generate the large 3D training dataset required for deep learning, we developed an iterative process of automated segmentation followed by semi-manual correction, resulting in >18,000 annotated Vibrio cholerae cells in 3D images. We demonstrate that this large training dataset and the neural network with optimized post-processing yield accurate segmentation results for biofilms of different species and on biofilm images from different microscopes. Finally, we used the accurate single-cell segmentation results to track cell lineages in biofilms and to perform spatiotemporal measurements of single-cell growth rates during biofilm development.


Assuntos
Aprendizado Profundo , Linhagem da Célula , Imageamento Tridimensional/métodos , Algoritmos , Biofilmes , Bactérias , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...